https://www.fzdh.com/index.php?action=history&feed=atom&title=%E4%B8%89%E7%BE%A7%E9%85%B8%E5%BE%AA%E7%8E%AF
三羧酸循环 - 版本历史
2024-11-02T20:14:31Z
本wiki的该页面的版本历史
MediaWiki 1.35.1
https://www.fzdh.com/index.php?title=%E4%B8%89%E7%BE%A7%E9%85%B8%E5%BE%AA%E7%8E%AF&diff=75331&oldid=prev
112.247.109.102:以“{{百科小图片|bk8z8.jpg|解释更清晰、明确}}由乙酰CoA和草酰乙酸缩合成有三个羧基的柠檬酸, 柠檬酸经一系列反应, 一...”为内容创建页面
2014-01-26T08:50:42Z
<p>以“{{百科小图片|bk8z8.jpg|解释更清晰、明确}}由<a href="/%E4%B9%99%E9%85%B0" class="mw-redirect" title="乙酰">乙酰</a>CoA和<a href="/%E8%8D%89%E9%85%B0%E4%B9%99%E9%85%B8" title="草酰乙酸">草酰乙酸</a>缩合成有三个羧基的<a href="/%E6%9F%A0%E6%AA%AC%E9%85%B8" title="柠檬酸">柠檬酸</a>, 柠檬酸经一系列反应, 一...”为内容创建页面</p>
<p><b>新页面</b></p><div>{{百科小图片|bk8z8.jpg|解释更清晰、明确}}由[[乙酰]]CoA和[[草酰乙酸]]缩合成有三个羧基的[[柠檬酸]], 柠檬酸经一系列反应, 一再氧化脱羧, 经α[[酮戊二酸]]、 [[琥珀酸]], 再降解成草酰乙酸。而参与这一循环的[[丙酮]]酸的三个碳原子, 每循环一次, 仅用去一分子[[乙酰基]]中的二碳单位, 最后生成两分子的CO2 , 并释放出大量的能量。<br />
<br />
[[柠檬酸循环]](Citric acid cycle):也称为三羧酸循环(TriCarboxylic Acid cycle,<b>TCA</b>),Krebs循环。是用于乙酰CoA中的乙酰基氧化成CO2的[[酶促反应]]的[[循环系统]],该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。<br />
<br />
<b>一、三羧酸循环的过程<br />
</b><br />
<br />
乙酰CoA进入由一连串反应构成的循环体系,被氧化生成H2O和CO2。由于这个[[循环反应]]开始于乙酰CoA与草酰乙酸(oxaloacetic acid)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citrate cycle)。在三羧酸循环中,柠檬酸[[合成酶]][[催化]]的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行。 其详细过程如下: <br />
<br />
<b>(1)乙酰-CoA进入三羧酸循环</b><br />
<br />
乙酰CoA具有[[硫酯键]],乙酰基有足够能量与草酰乙酸的羧基进行[[醛醇]]型缩合。首先[[柠檬酸合酶]]的[[组氨酸]][[残基]]作为[[碱基]]与乙酰CoA作用,使乙酰CoA的甲基上失去一个h+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成[[柠檬]]酰CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citrate synthase)催化,是很强的[[放能反应]]。 <br />
<br />
由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个[[变构酶]],ATP是柠檬酸合成酶的变构[[抑制剂]],此外,α-酮戊二酸(α-ketoglutarate)、NADH能变构抑制其活性,长链[[脂酰]]CoA也可抑制它的活性,AMP可对抗ATP的抑制而起激活作用。<br />
<br />
<b>(2)异柠檬酸形成</b><br />
<br />
柠檬酸的叔醇基不易氧化,转变成异柠檬酸(isocitrate)而使叔醇变成仲醇,就易于氧化,此反应由顺[[乌头酸]]酶催化,为一可逆反应。<br />
<br />
<b>(3)第一次氧化脱羧</b><br />
<br />
在异柠檬酸[[脱氢酶]]作用下,异柠檬酸的仲醇氧化成羰基,生成[[草酰琥珀酸]](oxalosuccinic acid)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α-ketoglutarate)、NADH和co2,此反应为β-氧化脱羧,此酶需要Mg2+作为[[激活剂]]。<br />
<br />
此反应是不可逆的,是三羧酸循环中的[[限速步骤]],ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。<br />
<br />
<b>(4)第二次氧化脱羧</b><br />
<br />
在α-[[酮戊二酸脱氢酶]]系作用下,α-酮戊二酸氧化脱羧生成[[琥珀酰]]CoA(succincyl CoA)、NADH.H+和CO2,反应过程完全类似于[[丙酮酸脱氢酶]]系催化的氧化脱羧,属于α氧化脱羧,氧化产生的能量中一部分储存于琥珀酰CoA的高能硫酯键中。<br />
<br />
α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸[[脱羧酶]]、[[硫辛酸]]琥珀酰[[基转移酶]]、二氢[[硫辛酸脱氢酶]])和五个[[辅酶]](tpp、硫辛酸、hscoa、NAD+、FAD)组成。<br />
<br />
此反应也是不可逆的。α-酮戊二酸脱氢酶[[复合体]]受ATP、GTP、NADH和琥珀酰CoA抑制,但其不受[[磷酸]]化/去磷酸化的调控。<br />
<br />
<b>(5)[[底物]]磷酸[[化生]]成ATP</b><br />
<br />
在琥珀酸[[硫激酶]](succinate thiokinase)的作用下,琥珀酰CoA的硫酯键水解,释放的自由能用于合成GTP([[三磷酸鸟苷]] guanosine triphosphate),在[[细菌]]和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰CoA生成琥珀酸和[[辅酶A]]。<br />
<br />
<b>(6)琥珀酸脱氢</b><br />
<br />
[[琥珀酸脱氢酶]](succinate dehydrogenase)催化琥珀酸氧化成为[[延胡索酸]](fumarate)。该酶结合在[[线粒体]]内膜上,而其他三羧酸循环的酶则都是存在线粒体[[基质]]中的,这酶含有铁硫中心和共价结合的FAD,来自琥珀酸的电子通过FAD和铁硫中心,然后进入[[电子传递链]]到O2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的[[竞争性抑制]]物,所以可以阻断三羧酸循环。<br />
<br />
<b>(7)延胡索酸的水化</b><br />
<br />
[[延胡索酸酶]]仅对延胡索酸的反式(反丁烯二酸) 双键起作用,而对[[顺丁烯二酸]]([[马来酸]])则无催化作用,因而是高度[[立体特异性]]的。<br />
<br />
<b>(8)生成[[苹果]]酸(malate)</b><br />
<br />
<b>(9)草酰乙酸再生</b><br />
<br />
在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脱氢酶的辅酶,接受氢成为NADH.H+(图4-5)。 <br />
==三羰酸循环总结==<br />
乙酰CoA+3NAD++FAD+GDP+Pi—→2CO2+3NADH+FADH2+GTP+2H+ +CoA-SH<br />
<br />
①CO2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β氧化脱羧,辅酶是NAD+,它们先使底物脱氢生成草酰琥珀酸,然后在Mn2+或Mg2+的协同下,脱去羧基,生成α-酮戊二酸。<br />
<br />
α-酮戊二酸脱氢酶系所催化的α氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同。<br />
<br />
应当指出,通过脱羧作用生成CO2,是机体内产生CO2的普遍规律,由此可见,机体CO2的生成与体外燃烧生成CO2的过程截然不同。<br />
<br />
②三羧酸循环的四次脱氢,其中三对氢原子以NAD+为受氢体,一对以FAD为受氢体,分别还原生成NADH+H+和FADH2。它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使adp和pi结合生成ATP,凡NADH+H+参与的递氢体系,每2H氧化成一[[分子]]H2O,每分子NADH最终产生2.5分子ATP,而FADH2参与的递氢体系则生成1.5分子ATP,再加上三羧酸循环中有一次底物磷酸化产生一分子ATP,那么,一分子柠檬酸参与三羧酸循环,直至循环终末[[共生]]成10分子ATP。<br />
<br />
③乙酰CoA中乙酰基的碳原子,乙酰CoA进入循环,与四碳[[受体]]分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子CO2,与进入循环的二碳乙酰基的碳原子数相等,但是,以CO2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸。<br />
<br />
④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中。<br />
<br />
例如 草酰乙酸——→[[天门冬氨酸]]<br />
<br />
α-酮戊二酸——→[[谷氨酸]]<br />
<br />
草酰乙酸——→丙酮酸——→[[丙氨酸]]<br />
<br />
其中丙酮酸[[羧化酶]]催化的生成草酰乙酸的反应最为重要。<br />
<br />
因为草酰乙酸的含量多少,直接影响循环的速度,因此不断补充草酰乙酸是使三羧酸循环得以顺利进行的关键。<br />
<br />
三羧酸循环中生成 的苹果酸和草酰乙酸也可以脱羧生成丙酮酸,再参与合成许多其他物质或进一步氧化。 <br />
==三羧酸循环的[[化学]]历程==<br />
(1)柠檬酸生成阶段 乙酰CoA不能直接被氧化分解,必须改变其分子结构才有可能。乙酰CoA和草酰乙酸在柠檬酸合成酶催化下,弄成柠檬酰CoA,加水生成柠檬酸并放出CoA-SH。<br />
<br />
(2)氧化脱羧阶段 这个阶段包括4个反应,即异柠檬酸的形成、愤柠檬酸的氧化脱羧、α-酮戊二酸氧化和琥珀酸生成,此阶段释放CO2并合成ATP。<br />
<br />
(3)草酰乙酸的再生阶段 通过上述两个阶段的反应,乙酰CoA的两个碳以CO2形式释放了,四碳的草酰乙酸转变成四碳琥珀酸。 保证后续的乙酰CoA级继续被氧化脱羧,琥珀酸经过延胡索酸和苹果酸生成,最后生成草酰乙酸。 <br />
==三羧酸循环的[[生理]]意义==<br />
1.三[[羧酸]]循环是机体获取能量的主要方式。1个分子[[葡萄糖]]经[[无氧酵解]]仅净生成2个分子ATP,而有氧氧化可净生成32个ATP,其中三羧酸循环生成20个ATP,在一般生理条件下,许多组织细胞皆从糖的有氧氧化获得能量。糖的有氧氧化不但释能效率高,而且逐步释能,并逐步储存于ATP分子中,因此能的利用率也很高。<br />
<br />
2.三羧酸循环是糖,脂肪和[[蛋白质]]三种主要有机物在体内彻底氧化的共同[[代谢途径]],三羧酸循环的[[起始物]]乙酰CoA,不但是糖氧化分解产物,它也可来自脂肪的[[甘油]]、脂肪酸和来自蛋白质的某些[[氨基酸]]代谢,因此三羧酸循环实际上是三种主要有机物在体内氧化供能的共同通路,估计人体内2/3的有机物是通过三羧酸循环而被分解的。<br />
<br />
3.三羧酸循环是体内三种主要有机物互变的联结机构,因糖和甘油在体内[[代谢]]可生成α-酮戊二酸及草酰乙酸等三羧酸循环的中间产物,这些中间产物可以转变成为某些氨基酸;而有些氨基酸又可通过不同途径变成α-酮戊二酸和草酰乙酸,再经糖异生的途径生成糖或转变成甘油,因此三羧酸循环不仅是三种主要的有机物[[分解代谢]]的最终共同途径,而且也是它们互变的联络机构。 <br />
==三羧酸循环的调节==<br />
如上所述糖有氧氧化分为两个阶段,第一阶段[[糖酵解]]途径的调节在糖酵解部分已探讨过,下面主要讨论第二阶段[[丙酮酸氧化]]脱羧生成乙酰CoA并进入三羧酸循环的一系列反应的调节。丙酮酸脱氢酶复合体、柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶复合体是这一过程的限速酶。<br />
<br />
丙酮酸脱氢酶复合体受[[别构]]调控也受[[化学修饰]]调控,该酶复合体受它的催化产物ATP、乙酰CoA和NADH有力的抑制,这种[[别构抑制]]可被长链脂[[肪酸]]所增强,当进入三羧酸循环的乙酰CoA减少,而AMP、CoA和NAD+堆积,酶复合体就被[[别构激活]],除上述别位调节,在[[脊椎动物]]还有第二层次的调节,即[[酶蛋白]]的化学修饰,PDH含有两个[[亚基]],其中一个亚基上特定的一个[[丝氨酸]]残基经磷酸化后,[[酶活性]]就受抑制,脱磷酸化活性就恢复,磷酸化-脱磷酸化作用是由特异的磷酸[[激酶]]和磷酸[[蛋白磷酸酶]]分别催化的,它们实际上也是丙酮酸酶复合体的组成,即前已述及的[[调节蛋白]],激酶受ATP别构激活,当ATP高时,PDH就磷酸化而被激活,当ATP浓度下降,激酶活性也降低,而[[磷酸酶]]除去PDH上磷酸,PDH又被激活了。<br />
<br />
对三羧酸循环中柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶的调节,主要通过产物的[[反馈]]抑制来实现的,而三羧酸循环是机体产能的主要方式。因此ATP/ADP与NADH/NAD+两者的比值是其主要[[调节物]]。ATP/ADP比值升高,抑制柠檬酸合成酶和异柠檬酶脱氢酶活性,反之ATP/ADP比值下降可激活上述两个酶。NADH/NAD+比值升高抑制柠檬酸合成酶和α-酮戊二酸脱氢酶活性,除上述ATP/ADP与NADH/NAD+之外其它一些代谢产物对酶的活性也有影响,如柠檬酸抑制柠檬酸合成酶活性,而琥珀酰-CoA抑制α-酮戊二酸脱氢酶活性。总之,组织中代谢产物决定循环反应的速度,以便调节机体ATP和NADH浓度,保证机体能量供给。<br />
<br />
[[分类:生物化学]][[分类:化学]][[分类:生物学]]</div>
112.247.109.102